

Purpose of This Guide

A **Lone Worker** can be defined as a worker that is in isolation from other workers without close or direct supervision.

Working alone is not a hazard on its own, but it does present a unique set of challenges. The purpose of this guide is to help you overcome these challenges by:

- 1 | Providing a framework to perform your own hazard assessment.
- 2 | Providing a grading method to assess the level of risk your lone workers currently face.

This data provides a starting point for you to assess current safety measures within your fleet and work towards a higher standard of safety for your lone workers.

What is a Hazard?

A **hazard** is a thing or condition that may expose a person to a risk of injury or occupationally caused illness.

Risk is the likelihood the hazard will lead to an injury.

A Hazard Assessment is a process that involves:

- · Identification of hazards in the workplace
- An assessment of the impact the identified hazards have on lone workers

Common Hazard Sources Include:

Physical

- Unstable work surfaces or conditions
- · Bright or minimal lighting
- Broken materials or equipment
- Extreme temperatures
- · Loose or falling objects

Chemical/Electrical

- · Harmful chemicals
- · Flammable materials
- · Live electrical wires
- Dust or fumes

Hazard Scoring Model

Once you have identified any hazards, you can determine the risk they pose by identifying the Consequences, Exposure and Probability values for each specific hazard.

Hazard Identification

What are the hazards associated with the job?

ConsequencesWhat are the effects of the hazard?

ExposureHow often are the workers exposed to the hazard?

ProbabilityHow likely is the hazard to happen?

Consequences

To determine the **Consequence Value** of a hazard, create a grading table to weight the consequences the hazard could have. You may also include monetary damage values.

Refer to the following table as an example:

Level - Severity of Consequence	Weight
Greater Than 10 Fatalities	100
Multiple Fatalities	85
Single Fatality	65
Permanent Disability	45
Disabling Injury	20
Minor Cuts/Bruises	5

Probability

To determine the **Probability Value** of a hazard, create a grading table to weight the probability of each hazard occurring.

Refer to the following table as an example:

Level - Likelihood the Hazard will Occur	Weight
An Expected Result	10.0
Likely - Up to a 50/50 Chance	9.0
Unusual - Up to 1 in 10 Times	5.0
Co-Incidental Chance - Up to 1 in a 100 Times	3.0
Practically Impossible - One in a Million Chance	1.0
Theoretical Possible but Has Not Occurred	0.1

Exposure

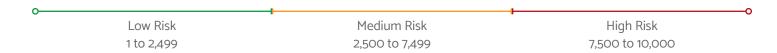
To determine the **Exposure Value** of a hazard, create a grading table to weigh the frequency the hazard could occur.

Refer to the following table as an example:

Level - Frequency of Exposure	Weight
Continuously or Multiple Times Throughout the Day	10.0
Frequently - Once per Day	8.0
Regularly - Once per Week	6.0
Often - Once per Month	3.0
Occasionally - It's Known to Have Happened	1.0
Rarely - Has Not Occurred but is Possible	0.5

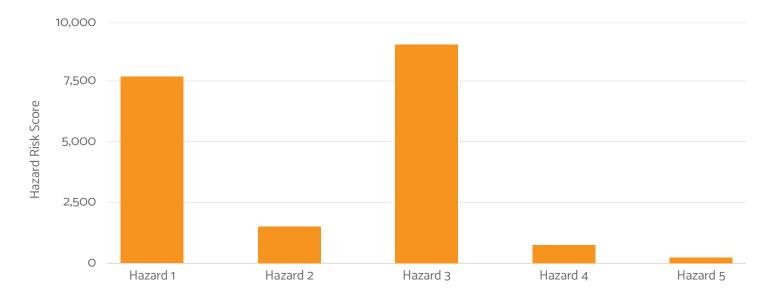
Quantifying the Risk

Using the **Consequence**, **Exposure**, and **Probability** values you've found, you can use the following simple formula to calculate the Hazard Risk Score for each hazard you face:


$$R = C \times E \times P$$

Where:

R = Hazard Risk ScoreC = Consequence ValueE = Exposure ValueP = Probability Value(0-100 Range Number)(0-100 Range Number)(0-100 Range Number)


Results

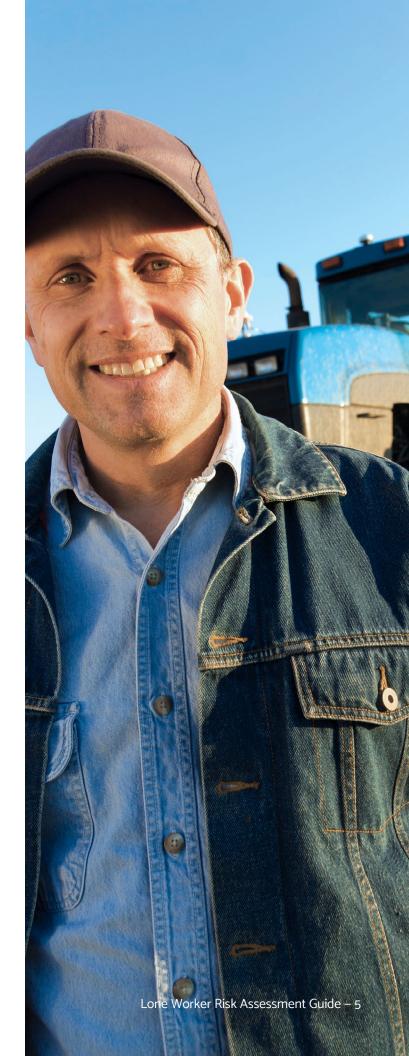
Assess risk according to the R Value scores, for example:

Hazard Risk Scores

The R scores for each hazard can be compared using a bar graph. For example:

Hazard	Risk Score	Consequence	Exposure	Probability
Hazard 1 - High	7650	85	10	9
Hazard 2 - Low	1560	65	8	3
Hazard 3 - <mark>High</mark>	9000	100	10	9
Hazard 4 - Low	810	45	2	9
Hazard 5 - Low	300	20	5	3

Practical Application


How does collecting hazard risk data serve help you?

Understanding the level of impact various hazards will have on your lone workers identifies where safety procedures should be improved.

Creating a risk profile for your employees ensures the frequency of their check-ins can be accurately set.

Low risk employees may only need to check-in every four hours, whereas high risk employees should check-in every hour instead.

The flexibility of this model ensures it will remain a helpful tool to support the development of your lone worker safety policies.

Contact Us

info@okalone.net www.okaloneworker.com

CANADA

Toll Free Phone: 855-440-5892

Address:

Trusty Ox Systems Ltd,

732 Caledonia Avenue, Victoria, BC, Canada, V8T 1E5

UK

Phone:

0131 610 2016

Address:

Trusty Ox Systems Ltd,

16 Forth Street, Edinburgh, Scotland, EHI 3LH

